Synthesis and characterization of a novel Au nanocatalyst with increased thermal stability.

نویسندگان

  • Yiwei Zhang
  • Yuming Zhou
  • Zewu Zhang
  • Sanming Xiang
  • Xiaoli Sheng
  • Shijian Zhou
  • Fei Wang
چکیده

We report the synthesis of a new Au nanocatalyst with increased thermal stability. This catalyst system consisted of gold nanoparticles attached to functionalized TiO2/SiO2 core-shell nanocomposites, together with the encapsulation of mesoporous silica. The synthesis process mainly involved four steps, which included the synthesis of the TiO2/SiO2 core-shell composites, synthesis of the Au/TiO2/SiO2 particles, coating of Au/TiO2/SiO2 with silica, and etching the outer silica layer. TEM images were used to confirm the success of each of the synthesis steps, and both UV-vis adsorption spectra and the catalytic activity evaluation were employed to investigate the degree of re-exposure of Au nanoparticles after the etching treatment. In our experiments, the obtained mesoSiO2/Au/TiO2/SiO2 catalyst showed a superior thermal stability and higher activity for CO conversion compared to the mesoSiO2/Au/SiO2 one. It resisted sintering during the calcination at 500 °C, whereas the unprotected one was found to sinter. Moreover, it was found that on the mesoSiO2/Au/TiO2/SiO2 sample, the outside silica material could hinder the phase transformation of titania to some extent. Thus, small crystalline particles of TiO2 anchored on the silica beads of the core-shell composites, leading to a better dispersion of small Au nanoparticles and improved catalytic capacity to resist sintering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of Co-Mn Nanocatalyst Prepared by Thermal Decomposition for Fischer-Tropsch Reaction

Nano-structure of Co–Mn spinel oxide was prepared by thermal decomposition method using [Co(NH3)4CO3]MnO4 as the precursor. The properties of the synthesized material were characterized by X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Transmission Electron Microscopy (TEM), surface area measurements, Energy-Dispersive X-ray (EDX) spectroscopy analys...

متن کامل

Spontaneous synthesis of gold nanoparticles on gum arabic-modified iron oxide nanoparticles as a magnetically recoverable nanocatalyst

A novel magnetically recoverable Au nanocatalyst was fabricated by spontaneous green synthesis of Au nanoparticles on the surface of gum arabic-modified Fe3O4 nanoparticles. A layer of Au nanoparticles with thickness of about 2 nm was deposited on the surface of gum arabic-modified Fe3O4 nanoparticles, because gum arabic acted as a reducing agent and a stabilizing agent simultaneously. The resu...

متن کامل

Synthesis of Au Nanoparticles by Thermal, Sonochemical and Electrochemical Methods: Optimization and Characterization

The present study concentrates on the synthesis of Au nanoparticles (AuNPs) using aqueous solution of Polyvinylpyrrolidone (PVP) and tetrachloroaurate by different methods as thermal, sonochemical and electrochemical reduction. The PVP has been used as a reducing agent and acts as a stabilizer for Au nano particles that obtained as principal product. In all synthesis procedures, the active radi...

متن کامل

Synthetic Application of Magnetic Nanocomposite Fe3O4@PEG-Au as a Heterogeneous and Reusable Nanocatalyst in The Suzuki Coupling Reactions

In the present study, we carried out chemical synthesis and characterization of Fe3O4@PEG-Au as a magnetic nanocomposite in aqueous solution by chemical co-precipitation of Fe3+ and Fe2+ ions and encapsulated by poly (ethylene glycol) (PEG) in order to enhancing hydrophilicity, biocompatibility and immobilizing gold ions in the presence of NaBH4 as a reducing agent. Nanostructures were characte...

متن کامل

Nickel ferrite as a recyclable nanocatalyst for synthesis of novel highly substituted 1,4-dihydropyrano[2,3-c]pyrazole derivatives

Highly substituted 1,4-dihydropyrano[2,3-c]pyrazole derivatives were synthesized by four-component reaction of aromatic aldehydes, malononitrile, ethyl acetoacetate and various phenylhydrazine, using nickel ferrite as a recyclable nanocatalyst by a grinding method under solvent-free and thermal conditions. The reaction has the advantages of good yields, less pollution, ease of separation of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dalton transactions

دوره 43 3  شماره 

صفحات  -

تاریخ انتشار 2014